skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "van Tussenbroek, Brigitta"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The organic carbon (Corg) stored in seagrass meadows is globally significant and could be relevant in strategies to mitigate increasing CO2 concentration in the atmosphere. Most of that stored Corg is in the soils that underlie the seagrasses. We explored how seagrass and soil characteristics vary among seagrass meadows across the geographic range of turtlegrass (Thalassia testudinum) with a goal of illuminating the processes controlling soil organic carbon (Corg) storage spanning 23° of latitude. Seagrass abundance (percent cover, biomass, and canopy height) varied by over an order of magnitude across sites, and we found high variability in soil characteristics, with Corg ranging from 0.08 to 12.59% dry weight. Seagrass abundance was a good predictor of the Corg stocks in surficial soils, and the relative importance of seagrass-derived soil Corg increased as abundance increased. These relationships suggest that first-order estimates of surficial soil Corg stocks can be made by measuring seagrass abundance and applying a linear transfer function. The relative availability of the nutrients N and P to support plant growth was also correlated with soil Corg stocks. Stocks were lower at N-limited sites than at P-limited ones, but the importance of seagrass-derived organic matter to soil Corg stocks was not a function of nutrient limitation status. This finding seemed at odds with our observation that labile standard substrates decomposed more slowly at N-limited than at P-limited sites, since even though decomposition rates were 55% lower at N-limited sites, less Corg was accumulating in the soils. The dependence of Corg stocks and decomposition rates on nutrient availability suggests that eutrophication is likely to exert a strong influence on carbon storage in seagrass meadows. 
    more » « less
  2. Abstract Restoration is becoming a vital tool to counteract coastal ecosystem degradation. Modifying transplant designs of habitat-forming organisms from dispersed to clumped can amplify coastal restoration yields as it generates self-facilitation from emergent traits, i.e. traits not expressed by individuals or small clones, but that emerge in clumped individuals or large clones. Here, we advance restoration science by mimicking key emergent traits that locally suppress physical stress using biodegradable establishment structures. Experiments across (sub)tropical and temperate seagrass and salt marsh systems demonstrate greatly enhanced yields when individuals are transplanted within structures mimicking emergent traits that suppress waves or sediment mobility. Specifically, belowground mimics of dense root mats most facilitate seagrasses via sediment stabilization, while mimics of aboveground plant structures most facilitate marsh grasses by reducing stem movement. Mimicking key emergent traits may allow upscaling of restoration in many ecosystems that depend on self-facilitation for persistence, by constraining biological material requirements and implementation costs. 
    more » « less
  3. null (Ed.)
    The global distribution of primary production and consumption by humans (fisheries) is well-documented, but we have no map linking the central ecological process of consumption within food webs to temperature and other ecological drivers. Using standardized assays that span 105° of latitude on four continents, we show that rates of bait consumption by generalist predators in shallow marine ecosystems are tightly linked to both temperature and the composition of consumer assemblages. Unexpectedly, rates of consumption peaked at midlatitudes (25 to 35°) in both Northern and Southern Hemispheres across both seagrass and unvegetated sediment habitats. This pattern contrasts with terrestrial systems, where biotic interactions reportedly weaken away from the equator, but it parallels an emerging pattern of a subtropical peak in marine biodiversity. The higher consumption at midlatitudes was closely related to the type of consumers present, which explained rates of consumption better than consumer density, biomass, species diversity, or habitat. Indeed, the apparent effect of temperature on consumption was mostly driven by temperature-associated turnover in consumer community composition. Our findings reinforce the key influence of climate warming on altered species composition and highlight its implications for the functioning of Earth’s ecosystems. 
    more » « less